CS - 403 (Operating Systems)

Second Semester

Course Description

Course Code Number	CS-403	Course Title	Operating Systems
Semester Hours	Total 4 hours per week Lecture 2 hours per week Lab2 hours per week	No. of Credit Units	3
Prerequisite	CST-301	Course Coordinator	Dr. Khine Moe Nwe Faculty of Computer Science
Course Length	15 Weeks	Type of Instruction	Lecture + Lab

Course Objective

This course intended to provide a thorough discussion of the fundamentals of operating system designs, and to relate these to contemporary design issues and to learn the current directions in the development of operating systems.

Course Outline

A state-of-the art survey of operating system principles that covers fundamental technology as well as contemporary design issues, such as concurrency, deadlock, virtual memory management, real-time systems and multiprocessor scheduling, embedded OSs, virtualization techniques.

Learning Outcomes

Computer Science students gain the knowledge of real-world design choices with case studies in Linux, UNIX, Android, and Windows 10. Students able to keep pace with a complex and rapidly changing field through the comprehensive coverage of the latest trends and developments in operating systems.

Text Book

[1] Operating Systems Internals and Design Principles (9th Edition) by William Stallings

Reference Books

- [1] Operating Systems Internals and Design Principles (7th Edition) by William Stallings
- [2] Operating System Concepts (6th Edition) by Avi Silberschatz , Peter Baer Galvin, and Greg Gagne

Course Organization

Student participation in this course will involve the following activities:

- Attending the lectures
- Lab
- Test (Moodle)
- Quiz
- Assignments
- Exam

Assessment Plan for the Course

Paper Exam	50 %
Assignment/Project	15 %
Quizzes/ Moodle	15 %
Class Participation	10 %
Lab Test	10 %

Tentative Lecture Plan (30 Periods for 15 weeks)

No.	Topics	Week	Remark
	Concurrency: Mutual Exclusion and		Chapter (5)
	Synchronization		
1.	5.1. Mutual Exclusion: Software	Week 1	
	Approaches		
	5.2. Principles of Concurrency		
2	5.3. Mutual Exclusion: Hardware Support	Week 2	
	5.4. Semaphores		
3	5.5. Monitors	Week 3+4	
	5.6. Message Passing		
	5.7. Readers/Writers Problem		
	Concurrency: Deadlock and Starvation		Chapter (6)
4.	6.1. Principles of Deadlock	Week 5	
	6.2. Deadlock Prevention		
	6.3. Deadlock Avoidance		
5.	6.4. Deadlock Detection	Week 6	
3.	6.5. An Integrated Deadlock Strategy	Week o	
	6.6. Dining Philosophers Problem		
	o.o. Bland I miosophers I robbem		
6.	6.7. Unix Concurrency Mechanisms	Week 7	
	6.8. Linux Kernel Concurrency		
	Mechanisms		
	6.9. Solaris Thread Synchronization		

	Primitives		
	6.10. Windows Concurrency Mechanisms		
	6.11. Android Interprocess Communication		
	Virtual Memory		Chapter (8)
7.	8.1. Hardware and Control Structures	Week 8	
	8.2. Operating System Software		
8.	8.3. Unix and Solaris Memory	Week 9	
	Management		
	8.4. Linux Memory Management		
	8.5. Windows Memory Management		
	8.6. Android Memory Management		
	Multiprocessor, Multicore, and Real-		Chapter (10)
	Time Scheduling		
9.	10.1. Multiprocessor and Multicore	Week 10	
	Scheduling		
	10.2. Real-Time Scheduling		
10.	10.3. Linux Scheduling	Week 11	
	10.4. Unix Svr4 Scheduling		
	10.5. Unix Freebsd Scheduling		
	10.6. Windows Scheduling		
	Embedded Operating Systems		Chapter (13)
11.	13.1. Embedded Systems	Week	
	13.2. Characteristics of Embedded	12+13	
	Operating Systems		
	13.3. Embedded Linux		
	13.4. Tinyos		
	Virtual Machines		Chapter(14)
12.	14.1. Virtual Machine Concepts	Week	
	14.2. Hypervisors	14+15	
	14.3. Container Virtualization		
	14.4. Processor Issues		
	14.5. Memory Management		
	14.6. I/O Management		
	14.7. Vmware Esxi		
	14.8. Microsoft Hyper-V and Xen Variants		
	14.9. Java Vm		

Tentative Plan for Lab (30 Periods for 15 weeks)

No	ative Plan for Lab (30 Periods for 15 weeks) Chapter	Periods
I	Chapter 6. Controlling Access to Files with Linux File System	4
1	Linux File System Permissions	<u> </u>
•	Managing File System Permissions from the Command Line	
	Practice: Interpreting File and Directory Permissions	
	Practice: Managing File Security from the Command	
2	Managing Default Permissions and File Access	
	Practice: Controlling New File Permissions and Ownership	
	Lab: Controlling Access to Files with Linux File System Permissions	
II	Chapter 7. Monitoring and Managing Linux Process	4
3	Processes	4
3		
	Controlling Jobs	
	Practice: Processes	
4	Practice: Background and Foreground Processes	
4	Killing Processes	
	Monitoring Process Activity	
	Practice: Killing Processes	
	Practice: Monitoring Process Activity	
	Lab: Monitoring and Managing Linux Processes	
III	Chapter 8. Controlling Services and Daemons	2
5	Identifying Automatically Started System Processes	
	Controlling System Services	
	Practice: Identify the Status of systemd Units	
	Practice: Using systemctl to Manage Services	
	Lab: Controlling Services and Daemons	
IV	Chapter 9. Configuring and Securing OpenSSH Service	4
6	Accessing the Remote Command Line with SSH	
	Configuring SSH Key-based Authentication	
	Practice: Accessing the Remote Command Line	
	Practice: Using SSH Key-based Authentication	
7	Customizing SSH Service Configuration	
	Practice: Restricting SSH Logins	
	Lab: Configuring and Securing OpenSSH Service	
V	Chapter 10. Analyzing and Storing Logs	4
8	System Log Architecture	
	Reviewing Syslog Files	
	Reviewing systemd Journal Entries	
	Practice: System Logging Components	
	Practice: Finding Log Entries	
	Practice: Finding Events With journalctl	
9	Perserving the systemd Journal	
	Maintaining Accurate Time	
	Practice: Configure a Persistent systemd Journal	
	Practice: Adjusting System Time	
	Lab: Analyzing and Storing Logs	
VI	Chapter 11. Managing Red Hat Enterprise Linux Networking	4
10	Networking Concepts	-
10	Validating Network Configuration	
	Configuring Networking with nmcli	
	Configuring retworking with milen	

	Practice: Networking Concepts	
	Practice: Examining Network Configuration	
	Practice: Configuring Networking with nmcli	
11	Editing Network Configuration Files	
	Configuring Host Names and Name Resolution	
	Practice: Editing Network Configuration Files	
	Practice: Configuring Host Names and Name Resolution	
	Lab: Managing Red Hat Enterprise Linux Networking	
VII	Chapter 12. Archiving and Copying Files Between Systems	4
12	Managing Compressed tar Archives	
	Copying Files Between Systems Securely	
	Practice: Backing Up and Restoring Files From a tar Archive	
	Practice: Copying Files Over the Network With scp	
13	Synchronizing Files Between Systems Securely	
	Practice: Synchronizing Two Directories Securely With rsync	
	Lab: Archiving and Copying Files Between Systems	
VIII	Chapter 13. Installing and Updating Software Packages	4
14	RPM Software Packages and Yum	
	Managing Software Updates with yum	
	Practice: RPM Software Packages	
	Practice: Installing and Updating Software with yum	
15	Enabling yum Software Repositories	
	Examining RPM Package Files	
	Practice: Enabling Software Repositories	
	Practice: Working with RPM Package Files	
	Lab: Installing and Updating Software Packages	